K.S.R.M. COMEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. III Semester (R18PG) Regular/Supplementary Examinations of March—2023 SUB: Stability Analysis of Slopes (GTE)

Time: 3 Hours

Max. Marks:60

		•	Marks	CO	B:.
		UNIT - I			
1.	(a)	Explain about Failure Modes of slopes.	12M	CO1	L2
		(OR)			
2.	(a)	Explain the Mechanics of Slope Failure	12M	CO1	L2
		UNIT – II			
3.	(a)	Explain the Infinite and Finite Slopes with Water Pressures	6M	CO2	1.2
	(b)	Discuss the Concept of Factor of Safety	6M	CO2	L6
	` '	(OR)			
4.	•	Determine the factor of safety of slope against the sliding for the slip surface shown in below figure. The properties of soil are $c = 20 \text{ kN/m}^2$, $\phi = 36^\circ$ and $\gamma = 20 \text{ kN/m}^3$. Use Swedish method of slices	12M	CO2	L 4
		11m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		UNIT – III			
5.	(a)	Derive the two-dimensional flow of Laplace equation and it's solution	6M	CO3	L3
	(b)	Discuss the determination of phreatic line, flow nets in homogeneous	6M	CO3	L2
		(OR)			
6.	(a)	Discuss the Seepage Control in Earth Dams	6M	CO3	L2
	(b)	Write short notes on: Critical hydraulic gradient and Piping	6M	CO3	L1
		UNIT – IV			
7.	(a)	Explain the Stabilization of Slopes by Drainage Methods	6M	CO4	L1
	(b)	Discuss briefly about Shotcreting.	6M	CO4	L2
		(OR)			
8.	(a)	Explain the Stabilization and Strengthening of Slopes by rock anchoring,	6M	CO4	L1
	(b)	Discuss about maintenance of slopes.	6M	CO4	L3
		UNIT-V			
9.	(a)	Discuss the Aims, Regional perspective Case studies of urban slope stability	6M	CO5	L2
	(b)	Discuss about slope stability analyses of Site 64 in the suburb of Scarborough.	6M	CO5	L3
		(OR)			
10.	(a)	Explain about Observational approach and monitoring.	6M	CO5	L1
	(b)	Discuss about slope stability analyses of Site 77 in the suburb of Scarborough.	6M	CO5	L2

K.S.R.M. COLLEGE OF MGINEERING (AUTONOMOUS), KADAPA M. Tech. III Semester (R18PG) Magular/Supplementary Examinations of March 2023 SUB: Dynamics of Linear Systems (PS)

Time: 3 legurs

conditions?

Max. Mark...60

		rin quantitation out y = q			
			Marks	CO	BL
		UNIT - I			T.A.
1.	(a)	The transfer function of a closed loop system is	6M	CO1	L3
	(b)	The transfer function of a closed roop system $\frac{x(s)}{u(s)} = \frac{K(s-\alpha 1)(s-\alpha 2)}{(s-\lambda 1)(s-\lambda 2)(s-\lambda 3)}$ where $\lambda_1 \neq \lambda_2 \neq \lambda_3$. Obtain a state space model for the system? Reduce the given state model into its canonical form by diagonalizing	6M	CO1	L5
	(u)	matrix A			
		$\dot{x}(t) = \begin{bmatrix} 0 & 1 & -1 \\ -6 & -11 & 6 \\ -6 & -11 & 5 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$ And $y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x(t)$			
		(OK)	CM	COI	L3
2	(a)	Obtain transfer function of a system if State Model is given.	6M 6M	CO1	L5 L5
	(b)	Determine the transfer matrix for the system $ \begin{bmatrix} \dot{x}1\\ \dot{x}2 \end{bmatrix} = \begin{bmatrix} -3 & 1\\ -2 & 0 \end{bmatrix} \begin{bmatrix} x1\\ x2 \end{bmatrix} + \begin{bmatrix} 4 & 6\\ -5 & 0 \end{bmatrix} \begin{bmatrix} u1\\ u2 \end{bmatrix} : \begin{bmatrix} y1\\ y2 \end{bmatrix} = \begin{bmatrix} 1 & -1\\ 8 & 1 \end{bmatrix} \begin{bmatrix} x1\\ x2 \end{bmatrix} $	OIVI	COI	<u> </u>
		UNIT – II			
3.	(a)	Obtain the Laplace transform approach to the solution of non-homogeneous	6M	CO2	L3
		state equations?	6M	CO2	L3
	(b)	Obtain the state transition matrix for the following system: $ \begin{bmatrix} \dot{x}1\\ \dot{x}2 \end{bmatrix} = \begin{bmatrix} 0 & 1\\ -2 & -3 \end{bmatrix} \begin{bmatrix} x1\\ x2 \end{bmatrix} $	V	•	
4.	(a)	(OR) obtain the time response of the following system with initial condition $x(0)=0$ for a unit step function occurring at $t=0$.	6M	CO2	L3
		$\begin{bmatrix} x1\\ x2 \end{bmatrix} = \begin{bmatrix} 0 & 1\\ -2 & -3 \end{bmatrix} \begin{bmatrix} x1\\ x2 \end{bmatrix} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u$			
	(b)	List the properties of State Transition Matrix.	6M	CO2	L1
	, ,	UNIT – III	127/4	CO3	L1
5.		A system represented by following state model is controllable but not observable. Show that non-observability is due to a pole-zero cancellation in C[sI-A] ⁻¹ B	12M	COS	. 111
		$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} x$			
		(OR)			
б.	(a	Explain Principle of duality? what are its necessary and sufficient	6M	CO	3 L1

- (b) Obtain the controllable phase variable state variable and model of transfer function $\frac{y(s)}{u(s)} = \frac{b_0 s^3 + b_1 s^2 + b_2 s^1 + b_3}{s^3 + a_1 s^2 + a s^1 + a_3}$ UNIT IV
 - (a) Explain the necessary and sufficient condition for pole placement? CO4 L5

 (b) Consider the system $\dot{x} = Ax + Bu$ and y = Cx 6M CO4 L6

 Where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ Design a minimum order state observer. The desired Eigen values of the

L5

observer matrix are 2+j 3.464 and -2-j3.464.

(OR)

8. A plant is given by $\dot{x} = Ax + Bu$ where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Determine the state feedback gain matrix K with closed loop poles as s = -2 + j4, s = -2 - j4 and s = -10.

UNIT-V

(a) Explain Liapunov stability analysis of linear time invariant system?
 (b) Using Liapunov function, check the stability of the following second order linear time in-variant system?
 (d) CO5 L5
 (e) L3

$$\begin{bmatrix} x1\\ x2 \end{bmatrix} = \begin{bmatrix} 0 & 1\\ -1 & -1 \end{bmatrix} \begin{bmatrix} x1\\ x2 \end{bmatrix}$$
(OR)

10. (a) Determine stability of the system described by the following matrix 6M CO5 L5

$$A = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}$$

- (b) Write short notes on 6M CO5 L1
 - (i) Positive definiteness and positive indefiniteness of scalar function
 - (ii) Negative definiteness and Negative indefiniteness of scalar function

*** ***

rifigirani Likipika

TAKE THE

(iii) Indefiniteness of scalar function

7.

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. III Semester (R18PG) Regular/Supplementary Examinations of March-2023 SUB: Fuels and Combustion Technology (RE)

Time: 3 Hours

Max. Marks: 60

			Marks	CO	\mathbf{BL}
		UNIT - I			
1.		Explain the properties and rating of fuels?	12M	CO1	L3
		(OR)			
2.		Explain Orsat apparatus with neat sketch?	14M	CO1	L3
		UNIT – II			
3.		Explain the Coal preparation process?	12M	CO2	L3
		(OR)			
4.		Explain the different types of coal and their properties?	12M	CO ₂	L3
		UNIT – III			
5.		Why is Oil so Important in Today's World?	12M	CO ₃	L3
		(OR)			
6.		Explain the different processing of petroleum?	12M	CO3	L3
		UNIT – IV			
7.		What are the classification of gases fuels briefly explain it?	12M	CO4	L4
		(OR)			
8.	(a)	Explain the concept of adiabatic flame temperature?	6M	CO4	
	(b)	What are the combustion appliances for solid, liquid and gaseous fuels	6M	CO4	L4
		briefly explain it?			
		UNIT-V		~~"	* 4
9.	(a)	What are the methods of strategies for emission reduction?	6M	CO5	L4
	(b)	What are the recent protocols of emission?	6M	CO5	L4
		(OR)			
10.		What are the emissions from fuel combustion system briefly explain it?	12M	CO5	L4

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. III Semester (R18PG) Regular/Supplementary Examinations of March-2023 SUB: IOT & ITS Applications (ES & VLSi)

Time: 3 Hours

Max. Marks: 60

			Marks	CO	BL
		UNIT - I			
1.	(a)	Explain and Draw One M2M IOT Standardized Architecture	6	CO1	L2
••	(b)	What is the importance of sensors and Actuators in IoT	6	CO1	L1
	(3)	(OR)			
2.	(a)	Write in detail about the Evolution of Internet of Things	6	CO1	1 -5
4.	(b)	Explain Simplified IOT Architectures	6	CO1	L2
	(D)	UNIT – II			
3.	(a)	Draw and explain the MAC frame format of IEEE 802.15.4	6	CO2	L1
٠.	(b)	Explain Network Layer Protocols in IOT.	6	CO ₂	L2
	(0)	(OR)			
4.	(a)	Distinguish Constrained Nodes and Constrained Networks	6	CO2	L4
-1.	(b)	Explain the Application Layer Protocols: CoAP and MQTT	6	CO2	L2
	(0)				
		UNIT III			
5.	(a)	What is the Influence of Microcontrollers in IOT	6	CO3	L1
	(b)	Explain in detail the Raspberry Pi interfaces.	6	CO3	L4
		(OR)			
6.	(a)	Discuss about System on Chips	6	CO3	L2
	(b)	Discuss in detail the use of embedded computing in the design of IoT Systems.	6	CO3	L2
		UNIT – IV			
7.	(a)	Explain about Edge Streaming Analytics and Network Analytics.	6	CO4	L2
	(b)	Write the use of Python Web Application Framework - Django.	6	CO4	L4
	(-)	(OR)			
8.	(a)	Discuss Briefly Hadoop Eco-System.	6	CO4	L2
	(b)	Discuss in detail about Xively cloud for IT and Illustrate Xively dashboard device details.	6	CO4	L2
		UNIT-V			
9.	(a)	Explain use of Big Data and Visualization in IOT.	6	CO5	
	(b)	Give two examples of IoT applications related to Home appliances and buildings	6	CO5	L5
		(OR)			
10.	(a)	Analyze the IOT applications in Industry 4.0 Concepts.	6	CO5	
•	(b)	cr To an all hairf on the verious	6	CO5	L6

K.S.R.M. COLLEGE OF an IGINEERING (AUTONOMOUS), KADAPA M. Toch, III Semester (R18PG) Regular/Supplementary Examinations of March—2023 SUB: Scalable Systems for Data Science (AI&DS)

Time: 3 Hours

Max. Marks: 60

			Marks	\mathbf{CO}	BL
		UNIT - I	6M	CO1	L4
1.	'(a)	List and explain the Characteristics of Distributed Systems.	6M	CO1	L3
	(b)	Discuss in detail about User requirements and design issues in Distributed	OIAY	COI	20
		systems			
		(OR)	C3.5	001	T 2
2.	(a)	Explain the VMTP and FLIP.	6M	CO1	L2
	(b)	Describe the evolution of Distributed Systems.	6M	CO1	L3
		UNIT II			
3.		Explain in detail about Google File system	12M	CO2	L3
		(OR)			
4.		Draw and explain the Sun Network File System.	12M	CO ₂	L4
		UNIT – III			
5.	(a)	Discuss in detail about CORBA.	6M	CO3	L3
	(b)	What is a RMI? Explain	6M	CO3	L1
	()	(OR)			
6.	(a)	Define web services. Discuss the Web Services.	6 M	CO3	L1
•	(b)	Illustrate the Remote procedure call.	6M	CO3	L2
	(0)	UNIT – IV			
7.		Explain Functional programming model of MapReduce.	12M	CO4	L3
1.		(OR)			
0	(-)	Describe the File permissions in HDFS.	6M	CO4	L 4
8.	(a)		6M	CO4	L2
	(b)	Explain the YARN. UNIT-V			
		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6M	CO5	L3
9.	(a)	Tandle Die Dote	6M	CO5	
	(b)		0171	J. J	- <u>-</u> -
		(OR)	12M	COS	L3
10).	Describe the Next Level Combat with Big Data.	17141	005	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

SET - 1

Q.P. Code: 1871308

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. III Sem. (R18PG) Regular Examinations of March, 2023 SUB: COMPOSITE MATERIALS (GTE, RE, ES&VLSI & AI&DS)

Time: 3 Hours Max. Marks: 60

			M	CO	BL
1.	(a) (b)	What are the primary functions of a reinforcement in composite materials Explain in detail how the distribution and density of reinforcement influence the properties of the composite materials	6M 6M	CO1 CO1	L1 L2
2.		(OR) Describe in detail the effect of reinforcement on overall composite performance.	12M	CO1	L1
3.		UNIT-II Explain layup method, curing, properties and applications of glass fibres	12M	CO2	L2
4.	(a)	(OR) Describe the manufacturing process of Boron-fibres, with a neat schematic	6M	CO2	L2
	(b)	diagram Discuss in detail about particulate reinforcements UNIT – III	6 M	CO2	L2
5.	(a) (b)	Explain properties and applications of carbon-carbon composites Write a detail note on Liquid metal infiltration of manufacturing of ceramic	6M 6M	CO3	L3 L2
6.		(OR) What is carbon-carbon composites and how they are produced? Why they are recommended for high temperature applications?	12M	CO3	L2
7.		UNIT – IV Discuss any three curing methods involved in manufacturing of polymer matrix composites	12M	CO4	L3
8.		(OR) Write notes on (i) filament winding and (ii) pultrusion. UNIT-V	12M	CO4	L1
9.		What is hygrothermal failure and describe various failure criteria.	12M	CO5	L2
10.	(a) (b)	OR) Discuss on stress concentrations in composite materials Discuss on strength design using caplet plots	6M 6M	CO5	L3 L3

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. III Semester (R18PG) Regular/Supplementary Examinations of March—2023 SUB: Cost Management of Engineering Projects (PS)

Time: 3 Hours

Max. Marks: 60

		Marks	CO	BL
	UNIT - I			
1.	Differentiate between Relevant cost and Differential cost	12M	CO1	L2
	(OR)			
2.	Illustrate the Creation of a Database for operational control	12M	CO1	L4
	UNIT – II			
3.	Classify the various stages of project execution	12M	CO2	L4
	(OR)			
4.	Discuss about the Project commissioning	·12M	CO2	L2
	UNIT – IH	٠		
5.	Explain about Break even analysis	12M	CO3	L2
	(OR)			
6.	Summarize the various pricing strategies	12M	CO3	L5
	UNIT – IV	••		
7.	What is Just-in-Time approach? Give an example.	12M	CO4	L1
	(OR)			
8.	Differentiate between Balanced Score Card and Value chain Analysis	12M	CO4	L2
	UNIT-V			
9.	Discuss about Linear programming.	12M	CO5	L2
	(OR)			
10.	What is the difference between PERT and CPM? Explain	12M	CO5	L1